CMD30 FisMat2023 - Submission - View

Abstract title: Flexomagnetism and vertically graded Néel temperature in the epitaxial Cr2O3 thin films
Submitting author: Pavlo Makushko
Affiliation: Helmholtz-Zentrum Dresden-Rossendorf
Affiliation Address: Bautzner Landstraße 400, 01328 Dresden - Germany
Country: Germany
Other authors and affiliations: Oleksandr Pylypovskyi (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Tobias Kosub (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Natascha Hedrich (University of Basel, 4056 Basel, Switzerland), Jiang Li (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Alexej Pashkin (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Stanislav Avdoshenko (Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany), René Hübner (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Fabian Ganss (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Daniel Wolf (Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany), Axel Lubk (Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany), Maciej Oskar Liedke (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Maik Butterling (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Andreas Wagner (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Kai Wagner (University of Basel, 4056 Basel, Switzerland), Brendan J. Shields (University of Basel, 4056 Basel, Switzerland), Paul Lehmann (University of Basel, 4056 Basel, Switzerland), Igor Veremchuk (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Jürgen Fassbender (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden), Patrick Maletinsky (University of Basel, 4056 Basel, Switzerland), Denys Makarov (Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden)
Abstract
Thin films of magnetoelectric antiferromagnetic insulators (Cr2O3, BiFeO3 etc.) have emerged as a prospective material platform for magnonics, spin superfluidity, THz spintronics, and energy efficient spin-orbitronics. Understanding the magnetomechanical coupling in antiferromagnets offers vast advantages in the control of the primary order parameters. A standard micromagnetic approach for the description of a material relies on the effective parameters being homogeneously distributed throughout the system. Such an approach is commonly sufficient, but does not provide full characterization of the system. The family of magnetomechanical effects includes piezo- and flexomagnetic responses, which determine the modification of the magnetic order parameters due to homogeneous or inhomogeneous strain, respectively. Accounting for the flexomagnetic effects promises technological advantages for multiferroic and antiferromagnetic materials, where cross-coupling between elastic, magnetic and electric subsystems open additional degrees of freedom in the control of the respective order parameters [1, 2].In this work, we discover the effect of strain gradient onto the magnetic behaviour of epitaxial Cr2O3 thin films [3, 4]. We demonstrate that by tuning the parameters of Cr2O3 epitaxial growth a fine control of the crystallographic and defect structure can be realized. A persistent strain gradient was obtained in Cr2O3 affecting its magnetic order parameters rendering a distribution of the Néel temperature along the thickness of the thin film. The antiferromagnetic ordering in the strained films can persist up to 100°C, suggesting Cr2O3 as a prospective material for industrial electronics applications. The inhomogeneous enhancement of the antiferromagnetic order parameter induced by the strain gradient renders a flexomagnetic response of about 15 µB nm-2. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with graded parameters. Distribution of the Neel temperature along the thin film thickness introduces temperature as a tool for realization of reconfigurable spintronic and magnonic devices.  [1] Bukharaev, A. A. et al., Straintronics: a new trend in micro- and nanoelectronics and materials science. Phys.—Usp. 61, 1175 (2018).[2] Lee, D. Flexoelectricity in thin films and membranes of complex oxides. APL Mater. 8, 090901 (2020).[3] P. Makushko et al., Nat Commun 13, 6745 (2022).[4] I. Veremchuk et al., Small 18, 2201228 (2022).