FisMat2017 - Submission - View

Abstract's title: Curley et al. Draft: January 9th20141 / 26Polyethyleneimine coating improves nanocrystalline diamond surface properties as a neuronal adhesion substrate
Submitting author: Michele Giugliano
Affiliation: University of Antwerp / Theoretical Neurobiology & Neuroengineering Lab
Affiliation Address: Theoretical Neurobiology and Neuroengineering Laboratory, Dept. of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
Country: Belgium
Oral presentation/Poster (Author's request): Oral presentation
Other authors and affiliations: L. Curley1, J. Motylewski1, F. Vahidpour2, M. McDonald2-3, I. Biro1, A. Moskalyuk1, A.Monaco1, H.-G. Boyen2-3, A. Taylor4-5, M. Nesládek2-3, M. Giugliano1,6-7 1Theoretical Neurobiology and Neuroengineering Laboratory, Dept. of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; 2Institute for Materials Research, Material Physics Division, Hasselt University, B-3590Diepenbeek, Belgium; 3IMOMEC associated laboratory, IMEC, Kapeldreef 75, B 3001 Leueven, Belgium; 4Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, 18221 Praha, Czech Republic; 5Nano6 s.r.o, Kladno, Czech Republic; 6Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, CH-1015,Switzerland 7Dept. Computer Science, University of Sheffield, S1 4DP Sheffield, UK.

The  neuroengineering of  devices  capable of  interfacing  with  the  central  nervous  system (CNS) is  a  growing  interdisciplinary  area  faced  with  many  challenges at  the  (sub)cellular level, due to  the  unique  anatomy  and  physiology of  the  CNS.  Arrays of  microelectrodes capable of  functional  extracellular  electrical  recording  and  stimulation  have  recently  found application in  (pre-)clinical  studies,  attempting to  restore  function of  damaged  neuronal tissue,  though  use  has  thus  far been  limited. Carbon-based  nanomaterials  have emerged as  a promising  biocompatible  material,  capable of  forming an  excellent  microelectrode  material through  doping  with  boron.  Nanocrystalline  diamond  (NCD), in  particular,  demonstrates unique   electrical,   chemical,   thermal   and   mechanical   properties,   along   with   stability, exemplifying its potential as a platform for neuronal interfacing. In this work, we considered NCD as  a  substrate  for ex  vivo  functional  development of  mammalian  primary  neuronal networks.  Our  main  goal  was to  integrate  the  advantages  that  diamond  films  provide  for biological   experiments   with   the   large   area   diamond   film   technology   andto   use microelectronic    compatible    treatment    strategies    enabling    neuronal    adhesion    and electrophysiological coupling of   neurons to  NCD   substrates.   Herein, we   describe   the successful   optimization of    diamond    surfaces    through    the    use of    nanometer-thin Polyethyleneimine coatings, as well as the preparation and functionalization of diamond  microelectrode  arrays  (MEAs),  for  extended  temporal interfacing of  NCD to neurons.