FisMat2017 - Submission - View

Abstract's title: Antinodal collapse in superconducting copper oxides driven by charge-transfer manipulation
Submitting author: Federico Cilento
Affiliation: Elettra - Sincrotrone Trieste
Affiliation Address: Strada Statale 14 - km 163,5 in AREA Science Park 34149 Basovizza (Trieste), Italy
Country: Italy
Oral presentation/Poster (Author's request): Oral presentation
Other authors and affiliations: F. Cilento1, G. Manzoni2, A. Sterzi2,1, S. Peli3, A. Ronchi3,4, A. Crepaldi5,1, F. Boschini6,7, C. Cacho8, R. Chapman8, E. Springate8, M. Capone9, M. Berciu6, A. Kemper10, A. Damascelli6,7, C. Giannetti3, and F. Parmigiani2,1 1 Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Italy 2 Dipartimento di Fisica, Università degli Studi di Trieste, 34127 Trieste, Italy 3 Interdisciplinary Laboratories for Advanced Materials Physics (ILAMP), Università Cattolica del Sacro Cuore, Brescia I-25121, Italy 4 Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 5 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 6 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada 7 Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 8 CLF-Artemis@Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX,UK 9 Scuola Internazionale Superiore di Studi Avanzati (SISSA) and CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy) 10 North Carolina State University, Raleigh, NC 27695, USA

The origin of the universal antinodal suppression of quasiparticle states in the normal phase of high-Tc superconducting (HTSC) copper oxides remains a lively debated issue. Here we perform the first time-resolved extreme-ultra-violet (EUV) photoemission experiment on a prototypical HTSC cuprate to disclose the ultrafast dynamics of the antinodal states. After photoinducing a non-thermal charge redistribution within the Cu and O orbitals, we observe the modification of the antinodal bandstructure via the formation of transient additional states at the Fermi level, which relax back on the ~100 fs timescale. Our results suggest that the antinodal suppression of states in the normal phase stems from the correlation-driven freezing of the electrons moving along the Cu-O bonds, analogously to the Mott localization mechanism. Finally, the observed ultrafast gaussian broadening of the non-bonding O-2ppstates points to an intrinsic spatial inhomogeneity of the charge-transfer photo-excitation process.